A direct approach with computerized symbolic computation for finding a series of traveling waves to nonlinear equations

نویسنده

  • Engui Fan
چکیده

A direct approach with computerized symbolic computation is applied to construct a series of traveling wave solutions for nonlinear equations. Compared with most existing symbolic computation methods such as tanh method and Jacobi function method, the proposed method not only gives new and more general solutions, but also provides a guideline to classify the various types of the solution according to some parameters.  2003 Elsevier Science B.V. All rights reserved. PACS: 02.30.Jr; 03.65.Fd

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some traveling wave solutions of soliton family

Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...

متن کامل

Exact solutions for nonlinear partial differential equations by using the extended tanh - method Mahmoud

The tanh method is a powerful solution method; various extension forms of the tanh method have been developed with a computerized symbolic computation and is used for constructing the exact travelling wave solutions, of coupled nonlinear equations arising in physics. The obtained solutions include solitons, kinks and plane periodic solutions. First a power series in tanh was used as an ansatz t...

متن کامل

The extended tanh method and its applications for solving nonlinear physical models

The tanh method is a powerful solution method; various extension forms of the tanh method have been developed with a computerized symbolic computation and is used for constructing the exact travelling wave solutions, of coupled nonlinear equations arising in physics. The obtained solutions include solitons, kinks and plane periodic solutions. First a power series in tanh was used as an ansatz t...

متن کامل

A new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics

In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...

متن کامل

Exact Traveling Wave Solutions for a Variable - coefficient Generalized Dispersive Water - wave System using the Generalized ( G ′ G ) - expansion Method

In this paper, a variable coefficient generalized dispersive water-wave system which can model the propagation of the long weakly nonlinear and weakly dispersive surface waves of variable depth in shallow water is presented. With the aid of symbolic computation and using the generalized (G ′ G )-expansion method, the exact traveling wave solutions of this system are obtained. It is shown that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003